

@agarri_fr

Nicolas Grégoire

Nullcon 2017

Nearly generic
 fuzzing of

XML-based formats

nicolas.gregoire@agarri.fr

@agarri_fr

Me?

● Nicolas Grégoire
● Working in InfoSec for the last 15 years
● Owner and Pwner at AGARRI

– Web hacking
● Published about XXE and SSRF in bug bounties

– Teaching
● Trainings (Burp Suite Pro) and talks

– Fuzzing
● Mostly client-side nowadays

@agarri_fr

Me vs XSLT
Inspirational work

Project goals
Design

Implementation
Findings

Future work

@agarri_fr

Me vs XSLT
Inspirational work

Project goals
Design

Implementation
Findings

Future work

@agarri_fr

Abuse of features

● Talk "Offensive XSLT" (2011)
– No memory corruption, simply abuse the features

– Read and create files, execute arbitrary code

– Highly reliable exploits

● Positive side effect
– Produced a large corpus covering most features

– Combine nodes, attributes and namespaces
● <sx:output file="/tmp/pwned">31337</sx:output>

@agarri_fr

Basic mutation-based fuzzing

● Talk "Dumb-fuzzing XSLT engines" (2013)
– Reuse XSLT corpus from 2011

– Mutation done by Radamsa

– Basic wrappers
● Linux: ASan + bash + grep
● Windows: Python + WinAppDbg

– Limited depth, found some bugs anyway

● Take-away
– Producing XML for fuzzing purposes is hard!

@agarri_fr

Me vs XSLT
Inspirational work

Project goals
Design

Implementation
Findings

Future work

@agarri_fr

Reusing code fragments

● Aimed at fuzzing of interpreters
– Tested on JavaScript, PHP and Ruby

● Christian Holler @mozdeco (2012)
– Paper: "Fuzzing with Code Fragments"

– Tool: LangFuzz (shared only w/ Mozilla and Google)

● Sean Heelan @seanhn
– Talk: "Ghosts of Christmas Past" (2014)

– Tools: Malamute (on Github), FragFuzz (non public)

@agarri_fr

Production of testcases

● QuickFuzz Project (Gustavo Grieco and al.)
– Chain different production steps

– Mix generation and mutation

● High-level production
– Grammar-based generation

– Haskell’s QuickCheck and Hackage

● Low-level production
– Dumb mutation

– Off-the-shelf tools like zzuf or radamsa

@agarri_fr

Guided fuzzing

● American fuzzy lop
– By Michael Zalewski @lcamtuf, since 2013

– Easy to use but hard to master

● Disadvantages
– Doesn’t run on Windows

– Mutation engine aimed at binary formats

● Advantages
– Impressive track record

– Large and active community
● Forks (WinAFL), patches (external mutators), helpers (afl-cmin.py)

@agarri_fr

Python mutators for AFL

● External Python mutation routines
– Patch by Christian Holler @decoder (2016)

● Add a Python stage calling an external module
● The module implements a custom mutator

– init() called once
● Do costly tasks

– fuzz() called for each mutation
● As fast as possible...

@agarri_fr

Me vs XSLT
Inspirational work

Project goals
Design

Implementation
Findings

Future work

@agarri_fr

goals

● Hierarchical mutations
– Structure (high-level), reuse known fragments

– Dialect (medium-level), optional

– Characters (low-level)

● Every XML dialect is supported
– First step: XSLT and SVG

– Final target: everything based on XML (SMIL, RSS, TT, ...)

● Coverage-guided path exploration
– First step: Open Source applications under Linux

– Final target: support for cross-platform + closed-source

@agarri_fr

Me vs XSLT
Inspirational work

Project goals
Design

Implementation
Findings

Future work

@agarri_fr

XML fragments

Name Value Depth

a <d e=”f”/><g h=”i”><j/></g> 0

d <d e=”f”/> 1

g <g h=”i”><j/></g> 1

j <j/> 2

Name Value Node Depth

b c a 0

e f d 1

h i g 1

 <d e=”f”/> <g h=”i”> <j/> </g>

@agarri_fr

Mutation strategy

● High-level mutators
– Perfect understanding of XML

– Fully generic

– Except for fragments (which are specific to a XML dialect)

● Medium-level mutators
– Optional (and specific to a XML dialect)

● Low-level mutators
– Work with bytes / characters

– Fully generic

– Done by off-the-shelf tools

@agarri_fr

High-level mutators

● First of all, a compliant XML processor
– Full support of

● Namespaces
● Document types aka DTD

– Provides parsing, manipulation and serialization
● Wisely select the XML library (lxml vs ElementTree)

● No knowledge of XML dialects
– Only interact with nodes and attributes

– But use (optional) dialect-specific fragments

@agarri_fr

High-level mutators

● Three families of actions
– Add, Replace and Remove

– Each family covers trees and attributes

● Replace try to use similar fragments
– How to define “similarity”?

● Attribute: attribute name, node name, type of value, …
● Tree: top-node name, depth, ...

● Remove doesn’t need fragments
– And can be used alone as a XML minimizer

@agarri_fr

Medium-level mutators

● Optional dialect-specific mutations
● May increase coverage significantly
● For XSLT

– Switch "Forwards-Compatible Processing” mode
● Ignores unknown and misplaced nodes/attributes

– Fix references to variables, parameters and keys
● Helps to find UAF and double-free

● For SVG
– Currently none, finds bugs nonetheless

@agarri_fr

Low-level mutators

● No knowledge of XML or its dialects
– Byte-level mutations by off-the-shelf tools

● May break valid XML documents
– Acceptable trade-off if we fuzz fast enough

● Outside of AFL
– Explicit calls to Radamsa / Surku / zzuf / ...

● When using AFL
– “trim”, “splice” and “havoc” stages

@agarri_fr

Me vs XSLT
Inspirational work

Project goals
Design

Implementation
Findings

Future work

@agarri_fr

Fragments database

● Based on SQLite
– Super fast

– Easy to manage

– One database file per XML dialect

● Write to the DB only when adding fragments
– No need for optimization

● But read access is on the critical path
– Must be as efficient as possible

– Fast medium (SSD or RAM), optimized queries

@agarri_fr

Optimization of queries

● Task: select a random row from a table
● Naive approach

– SELECT id, name, value FROM table

– ORDER BY random() LIMIT 1

● Efficient approach
– SELECT id, name, value FROM table

– WHERE rowid = (abs(random()) %

– (SELECT (SELECT max(rowid) FROM attribute)+1))

● Speed gain ~ 200x

@agarri_fr

XmlMutator

● Python module exposing a few functionalities
● Adding fragments

– Parse a sample and add its fragments to the database

● Creating a mutator
– Takes optional parameters (seed, name of dialect)

● Producing mutations
– Initialize mutator from a string or file

– Reset mutator to its initial state

– Modify state of mutator (Mutate or Reduce)

– Serialize to a string or file

@agarri_fr

XmlMutator

● Mutation API
– Mutate

● Execute some high-level mutations (Add, Replace or Remove)
● Then some medium-level mutations (if available)

– Reduce
● Only execute some high-level Remove mutations

● Possible work-flows
– Initialize / Mutate / Mutate / Mutate / Serialize

● One file (depth=3)

– Initialize / Mutate / Serialize / Reset / Mutate / Serialize
● Two files (both with depth=1)

● Useless without additional code calling the API

@agarri_fr

Wrapper: chxml

● Main front-end
● Features

– Reduce to a file

– Mutate to a file or directory

– Extract fragments and add them to the database

● Used by other tools
– As an external mutator for HonggFuzz / Malamute

– As a crash minimizer

@agarri_fr

Wrapper: AFL bridge

● Bridge between AFL and XmlMutator
● init() may take seconds

– Generate a list of backup samples

– Copy fragments database to memory

– Create a long-lived mutator

● fuzz() need to be fast (thousands of calls / second)
– Convert bytes received from AFL to a string

– Initialize mutator from string

– If unsuccessful (invalid XML), initialize mutator from samples

– Mutate a few times

– Serialize to bytes and send back to AFL

@agarri_fr

Fuzzing setup

● For each fuzzed target, two sets of binaries
– Path exploration

● Use AFL+LLVM deferred or persistent modes as much as possible

– Crash collection
● Early and verbose crash detection with ASan

● Slow or closed-source applications aren’t fuzzed
– But generated corpus is reused against them

– For closed-source, exploitability heuristics are useful

● Crash collection and bucketization
– CrashManager by Mozilla Security

@agarri_fr

Harnesses

● xsltproc (libxslt)
– Use AFL deferred mode / speed x 2

– Strategically placed call to __AFL_INIT

● xpcshell (Firefox)
– Use AFL persistent mode / speed x 100

– JavaScript function aflloop() exposes __AFL_LOOP

– Thanks @mozdeco for the patch!

● Inkscape
– Designed to loop through input files

– Switching to __AFL_LOOP was trivial

@agarri_fr

Numbers

● XSLT
– Four targets (libxslt, sablotron, transformiix, xalan-c)

– Two Xeon E5-2630v3 CPU (32 threads)

– One billion execs per day

– 360 execs per second per thread

● SVG
– One target (Inkscape)

– Half a Core i7-6700 CPU (4 threads)

– Nine million execs per day

– 25 execs per second per thread

@agarri_fr

Me vs XSLT
Inspirational work

Project goals
Design

Implementation
Findings

Future work

@agarri_fr

Findings

● Section removed in this version of the slides
– You should have come to Goa ;-)

● Next public edition
– Allstars 2017, during OWASP AppSec EU

@agarri_fr

Me vs XSLT
Inspirational work

Project goals
Design

Implementation
Findings

Future work

@agarri_fr

Moar!

● More time
– Triaging and reporting is time-consuming

● More targets
– Path exploration + reuse of generated corpus

● More dialects
– Convert corpus to fragments

– Write medium-level mutators (if needed)

● More guided fuzzers
– LibFuzzer, covFuzz, HonggFuzz, Talos IntelPT, ...

@agarri_fr

Conclusion

● Project is very young
● A few goals already reached

– Guided fuzzing of Open Source Linux applications

– High-level XML mutator

– Medium-level XSLT mutator

– XML-aware minimizer

– Very complete XLST fragments database

– More than 10 vulnerabilities found

● Expect more bugs!!

@agarri_fr

Nicolas Grégoire

Nullcon 2017

Nearly generic
 fuzzing of

XML-based formats

nicolas.gregoire@agarri.fr
Thanks f

or read
ing!

	Diapo 1
	Diapo 2
	Diapo 3
	Diapo 4
	Diapo 5
	Diapo 6
	Diapo 7
	Diapo 8
	Diapo 9
	Diapo 10
	Diapo 11
	Diapo 12
	Diapo 13
	Diapo 14
	Diapo 15
	Diapo 16
	Diapo 17
	Diapo 18
	Diapo 19
	Diapo 20
	Diapo 21
	Diapo 22
	Diapo 23
	Diapo 24
	Diapo 25
	Diapo 26
	Diapo 27
	Diapo 28
	Diapo 29
	Diapo 30
	Diapo 31
	Diapo 32
	Diapo 33
	Diapo 34
	Diapo 35
	Diapo 36

