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Me?

● Nicolas Grégoire
● Working in InfoSec for the last 15 years
● Owner and Pwner at AGARRI

– Web hacking
● Published about XXE and SSRF in bug bounties

– Teaching
● Trainings (Burp Suite Pro) and talks

– Fuzzing
● Mostly client-side nowadays
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Abuse of features

● Talk "Offensive XSLT" (2011)
– No memory corruption, simply abuse the features

– Read and create files, execute arbitrary code

– Highly reliable exploits

● Positive side effect
– Produced a large corpus covering most features

– Combine nodes, attributes and namespaces
● <sx:output file="/tmp/pwned">31337</sx:output>
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Basic mutation-based fuzzing

● Talk "Dumb-fuzzing XSLT engines" (2013)
– Reuse XSLT corpus from 2011

– Mutation done by Radamsa

– Basic wrappers
● Linux: ASan + bash + grep
● Windows: Python + WinAppDbg

– Limited depth, found some bugs anyway

● Take-away
– Producing XML for fuzzing purposes is hard!
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Reusing code fragments

● Aimed at fuzzing of interpreters
– Tested on JavaScript, PHP and Ruby

● Christian Holler @mozdeco (2012)
– Paper: "Fuzzing with Code Fragments"

– Tool: LangFuzz (shared only w/ Mozilla and Google)

● Sean Heelan @seanhn
– Talk: "Ghosts of Christmas Past" (2014)

– Tools: Malamute (on Github), FragFuzz (non public)
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Production of testcases

● QuickFuzz Project (Gustavo Grieco and al.)
– Chain different production steps

– Mix generation and mutation

● High-level production
– Grammar-based generation

– Haskell’s QuickCheck and Hackage

● Low-level production
– Dumb mutation

– Off-the-shelf tools like zzuf or radamsa
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Guided fuzzing

● American fuzzy lop
– By Michael Zalewski @lcamtuf, since 2013

– Easy to use but hard to master

● Disadvantages
– Doesn’t run on Windows

– Mutation engine aimed at binary formats

● Advantages
– Impressive track record

– Large and active community
● Forks (WinAFL), patches (external mutators), helpers (afl-cmin.py)
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Python mutators for AFL

● External Python mutation routines
– Patch by Christian Holler @decoder (2016)

● Add a Python stage calling an external module
● The module implements a custom mutator

– init() called once
● Do costly tasks

– fuzz() called for each mutation
● As fast as possible...
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goals

● Hierarchical mutations
– Structure (high-level), reuse known fragments

– Dialect (medium-level), optional

– Characters (low-level)

● Every XML dialect is supported
– First step: XSLT and SVG

– Final target: everything based on XML (SMIL, RSS, TT, ...)

● Coverage-guided path exploration
– First step: Open Source applications under Linux

– Final target: support for cross-platform + closed-source
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XML fragments

Name Value Depth

a <a b=”c”><d e=”f”/><g h=”i”><j/></g></a> 0

d <d e=”f”/> 1

g <g h=”i”><j/></g> 1

j <j/> 2

Name Value Node Depth

b c a 0

e f d 1

h i g 1

<a b=”c”> <d e=”f”/> <g h=”i”> <j/> </g> </a>
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Mutation strategy

● High-level mutators
– Perfect understanding of XML

– Fully generic

– Except for fragments (which are specific to a XML dialect)

● Medium-level mutators
– Optional (and specific to a XML dialect)

● Low-level mutators
– Work with bytes / characters

– Fully generic

– Done by off-the-shelf tools
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High-level mutators

● First of all, a compliant XML processor
– Full support of

● Namespaces
● Document types aka DTD

– Provides parsing, manipulation and serialization
● Wisely select the XML library (lxml vs ElementTree)

● No knowledge of XML dialects
– Only interact with nodes and attributes

– But use (optional) dialect-specific fragments
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High-level mutators

● Three families of actions
– Add, Replace and Remove

– Each family covers trees and attributes

● Replace try to use similar fragments
– How to define “similarity”?

● Attribute: attribute name, node name, type of value, …
● Tree: top-node name, depth, ...

● Remove doesn’t need fragments
– And can be used alone as a XML minimizer
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Medium-level mutators

● Optional dialect-specific mutations
● May increase coverage significantly
● For XSLT

– Switch "Forwards-Compatible Processing” mode
● Ignores unknown and misplaced nodes/attributes

– Fix references to variables, parameters and keys
● Helps to find UAF and double-free

● For SVG
– Currently none, finds bugs nonetheless
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Low-level mutators

● No knowledge of XML or its dialects
– Byte-level mutations by off-the-shelf tools

● May break valid XML documents
– Acceptable trade-off if we fuzz fast enough

● Outside of AFL
– Explicit calls to Radamsa / Surku / zzuf / ...

● When using AFL
– “trim”, “splice” and “havoc” stages
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Fragments database

● Based on SQLite
– Super fast

– Easy to manage

– One database file per XML dialect

● Write to the DB only when adding fragments
– No need for optimization

● But read access is on the critical path
– Must be as efficient as possible

– Fast medium (SSD or RAM), optimized queries
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Optimization of queries

● Task: select a random row from a table
● Naive approach

– SELECT id, name, value FROM table

– ORDER BY random() LIMIT 1

● Efficient approach
– SELECT id, name, value FROM table

– WHERE rowid = (abs(random()) % 

– (SELECT (SELECT max(rowid) FROM attribute)+1))

● Speed gain ~ 200x
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XmlMutator

● Python module exposing a few functionalities
● Adding fragments

– Parse a sample and add its fragments to the database

● Creating a mutator
– Takes optional parameters (seed, name of dialect)

● Producing mutations
– Initialize mutator from a string or file

– Reset mutator to its initial state

– Modify state of mutator (Mutate or Reduce)

– Serialize to a string or file
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XmlMutator

● Mutation API
– Mutate

● Execute some high-level mutations (Add, Replace or Remove)
● Then some medium-level mutations (if available)

– Reduce
● Only execute some high-level Remove mutations

● Possible work-flows
– Initialize / Mutate / Mutate / Mutate / Serialize

● One file (depth=3)

– Initialize / Mutate / Serialize / Reset / Mutate / Serialize
● Two files (both with depth=1)

● Useless without additional code calling the API
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Wrapper: chxml

● Main front-end
● Features

– Reduce to a file

– Mutate to a file or directory

– Extract fragments and add them to the database

● Used by other tools
– As an external mutator for HonggFuzz / Malamute

– As a crash minimizer
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Wrapper: AFL bridge

● Bridge between AFL and XmlMutator
● init() may take seconds

– Generate a list of backup samples

– Copy fragments database to memory

– Create a long-lived mutator

● fuzz() need to be fast (thousands of calls / second)
– Convert bytes received from AFL to a string

– Initialize mutator from string

– If unsuccessful (invalid XML), initialize mutator from samples

– Mutate a few times

– Serialize to bytes and send back to AFL
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Fuzzing setup

● For each fuzzed target, two sets of binaries
– Path exploration

● Use AFL+LLVM deferred or persistent modes as much as possible

– Crash collection
● Early and verbose crash detection with ASan

● Slow or closed-source applications aren’t fuzzed
– But generated corpus is reused against them

– For closed-source, exploitability heuristics are useful

● Crash collection and bucketization
– CrashManager by Mozilla Security
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Harnesses

● xsltproc (libxslt)
– Use AFL deferred mode / speed x 2

– Strategically placed call to __AFL_INIT

● xpcshell (Firefox)
– Use AFL persistent mode / speed x 100

– JavaScript function aflloop() exposes __AFL_LOOP

– Thanks @mozdeco for the patch!

● Inkscape
– Designed to loop through input files

– Switching to __AFL_LOOP was trivial
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Numbers

● XSLT
– Four targets (libxslt, sablotron, transformiix, xalan-c)

– Two Xeon E5-2630v3 CPU (32 threads)

– One billion execs per day

– 360 execs per second per thread

● SVG
– One target (Inkscape)

– Half a Core i7-6700 CPU (4 threads)

– Nine million execs per day

– 25 execs per second per thread
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Findings

● Section removed in this version of the slides
– You should have come to Goa ;-)

● Next public edition
– Allstars 2017, during OWASP AppSec EU
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Moar!

● More time
– Triaging and reporting is time-consuming

● More targets
– Path exploration + reuse of generated corpus

● More dialects
– Convert corpus to fragments

– Write medium-level mutators (if needed)

● More guided fuzzers
– LibFuzzer, covFuzz, HonggFuzz, Talos IntelPT, ...
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Conclusion

● Project is very young
● A few goals already reached

– Guided fuzzing of Open Source Linux applications

– High-level XML mutator

– Medium-level XSLT mutator

– XML-aware minimizer

– Very complete XLST fragments database

– More than 10 vulnerabilities found

● Expect more bugs!!
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